合作专线:17362615757
行业资讯

AI新闻

当前位置:首页 > 行业资讯 > AI新闻

实战检验 | 基于技术KerasConv1D心电图结果相关检测开源平台教程视频(附上代码实现)

 
作者 | 小宋是呢
来源 | 授权转载自知乎(ID:小宋是呢)实战概述
本实战内容取自笔者参加的首届中国心电智能大赛项目,初赛要求为设计一个自动识别心电图波形算法。笔者使用Keras框架设计了基于Conv1D结构的模型,并且开源了代码作为Baseline。内容包括数据预处理,模型搭建,网络训练,模型应用等,此Baseline采用最简单的一维卷积达到了88%测试准确率。有多支队伍在笔者基线代码基础上调优取得了优异成绩,顺利进入复赛。大赛简介为响应国家健康中国战略,推送健康医疗和大数据的融合发展的政策,由清华大学临床医学院和数据科学研究院,天津市武清区京津高村科技创新园,以及多家重点医院联合主办的首届中国心电智能大赛正式启动。自今日起至2019年3月31日24时,大赛开启全球招募,预计大赛总奖金将高达百万元!目前官方报名网站已上线,欢迎高校、医院、创业团队等有志于中国心电人工智能发展的人员踊跃参加。首届中国心电智能大赛官方报名网站>>数据介绍下载完整的训练集和测试集,共1000例常规心电图,其中训练集中包含600例,测试集中共400例。该数据是从多个公开数据集中获取。参赛团队需要利用有正常/异常两类标签的训练集数据设计和实现算法,并在没有标签的测试集上做出预测。该心电数据的采样率为500 Hz。为了方便参赛团队用不同编程语言都能读取数据,所有心电数据的存储格式为MAT格式。该文件中存储了12个导联的电压信号。训练数据对应的标签存储在txt文件中,其中0代表正常,1代表异常。赛题分析简单分析一下,初赛的数据集共有1000个样本,其中训练集中包含600例,测试集中共400例。其中训练集中包含600例是具有label的,可以用于我们训练模型;测试集中共400例没有标签,需要我们使用训练好的模型进行预测。赛题就是一个二分类预测问题,解题思路应该包括以下内容数据读取与处理网络模型搭建模型的训练模型应用与提交预测结果实战应用经过对赛题的分析,我们把任务分成四个小任务,首先第一步是:1.数据读取与处理该心电数据的采样率为500 Hz。为了方便参赛团队用不同编程语言都能读取数据,所有心电数据的存储格式为MAT格式。该文件中存储了12个导联的电压信号。训练数据对应的标签存储在txt文件中,其中0代表正常,1代表异常。我们由上述描述可以得知,我们的数据保存在MAT格式文件中(这决定了后面我们要如何读取数据)
采样率为500 Hz(这个信息并没有怎么用到,大家可以简单了解一下,就是1秒采集500个点,由后面我们得知每个数据都是5000个点,也就是10秒的心电图片)12个导联的电压信号(这个是指采用12种导联方式,大家可以简单理解为用12个体温计量体温,从而得到更加准确的信息,下图为导联方式简单介绍,大家了解下即可。要注意的是,既然提供了12种导联,我们应该全部都用到,虽然我们仅使用一种导联方式也可以进行训练与预测,但是经验告诉我们,采取多个特征会取得更优效果)数据处理函数定义:import kerasfrom scipy.io import loadmatimport matplotlib.pyplot as pltimport globimport numpy as npimport pandas as pdimport mathimport osfrom keras.layers import *from keras.models import *from keras.objectives import *
BASE_DIR = "preliminary/TRAIN/"
#进行归一化def normalize(v): return (v - v.mean(axis=1).reshape((v.shape[0],1))) / (v.max(axis=1).reshape((v.shape[0],1)) + 2e-12)
loadmat打开文件def get_feature(wav_file,Lens = 12,BASE_DIR=BASE_DIR): mat = loadmat(BASE_DIR+wav_file) dat = mat["data"] feature = dat[0:12] return(normalize(feature).transopse())
#把标签转成oneHot形式def convert2oneHot(index,Lens): hot = np.zeros((Lens,)) hot[index] = 1 return(hot)
TXT_DIR = "preliminary/reference.txt"MANIFEST_DIR = "preliminary/reference.csv"读取一条数据进行显示
if name__ == "__main": dat1 = get_feature("preliminary/TRAIN/TRAIN101.mat") print(dat1.shape) #one data shape is (12, 5000) plt.plt(dat1[:,0]) plt.show()我们由上述信息可以看出每种导联都是由5000个点组成的列表,12种导联方式使每个样本都是12*5000的矩阵,类似于一张分辨率为12x5000的照片。我们需要处理的就是把每个读取出来,归一化一下,送入网络进行训练可以了。标签处理方式def create_csv(TXT_DIR=TXT_DIR): lists = pd.read_csv(TXT_DIR,sep=r"\t",header=None) lists = lists.sample(frac=1) lists.to_csv(MANIFEST_DIR,index=None) print("Finish save csv")我这里是采用从reference.txt读取,然后打乱保存到reference.csv中,注意一定要进行数据打乱操作,不然训练效果很差。因为原始数据前面便签全部是1,后面全部是0数据迭代方式Batch_size = 20def xs_gen(path=MANIFEST_DIR,batch_size = Batch_size,train=True):
img_list = pd.read_csv(path)if train : img_list = np.array(img_list)[:500] print("Found %s train items."%len(img_list)) print("list 1 is",img_list[0]) steps = math.ceil(len(img_list) / batch_size) # 确定每轮有多少个batchelse: img_list = np.array(img_list)[500:] print("Found %s test items."%len(img_list)) print("list 1 is",img_list[0]) steps = math.ceil(len(img_list) / batch_size) # 确定每轮有多少个batchwhile True: for i in range(steps):
batch_list = img_list[i * batch_size : i * batch_size + batch_size] np.random.shuffle(batch_list) batch_x = np.array([get_feature(file) for file in batch_list[:,0]]) batch_y = np.array([convert2oneHot(label,2) for label in batch_list[:,1]])
yield batch_x, batch_y数据读取的方式我采用的是生成器的方式,这样可以按batch读取,加快训练速度,大家也可以采用一下全部读取,看个人的习惯了2.网络模型搭建数据我们处理好了,后面就是模型的搭建了,我使用keras搭建的,操作简单便捷,tf,pytorch,sklearn大家可以按照自己喜好来。网络模型可以选择CNN,RNN,Attention结构,或者多模型的融合,抛砖引玉,此Baseline采用的一维CNN方式,一维CNN学习地址模型搭建TIME_PERIODS = 5000num_sensors = 12def build_model(input_shape=(TIME_PERIODS,num_sensors),num_classes=2): model = Sequential() #model.add(Reshape((TIME_PERIODS, num_sensors), input_shape=input_shape)) model.add(Conv1D(16, 16,strides=2, activation='relu',input_shape=input_shape)) model.add(Conv1D(16, 16,strides=2, activation='relu',padding="same")) model.add(MaxPooling1D(2)) model.add(Conv1D(64, 8,strides=2, activation='relu',padding="same")) model.add(Conv1D(64, 8,strides=2, activation='relu',padding="same")) model.add(MaxPooling1D(2)) model.add(Conv1D(128, 4,strides=2, activation='relu',padding="same")) model.add(Conv1D(128, 4,strides=2, activation='relu',padding="same")) model.add(MaxPooling1D(2)) model.add(Conv1D(256, 2,strides=1, activation='relu',padding="same")) model.add(Conv1D(256, 2,strides=1, activation='relu',padding="same")) model.add(MaxPooling1D(2)) model.add(GlobalAveragePooling1D()) model.add(Dropout(0.3)) model.add(Dense(num_classes, activation='softmax')) return(model)用model.summary()输出的网络模型为训练参数比较少,大家可以根据自己想法更改。3.网络模型训练模型训练if name__ == "__main": """dat1 = get_feature("TRAIN101.mat") print("one data shape is",dat1.shape) #one data shape is (12, 5000) plt.plot(dat1[0]) plt.show()""" if (os.path.exists(MANIFEST_DIR)==False): create_csv() train_iter = xs_gen(train=True) test_iter = xs_gen(train=False) model = build_model() print(model.summary()) ckpt = keras.callbacks.ModelCheckpoint( filepath='best_model.{epoch:02d}-{val_acc:.2f}.h5', monitor='val_acc', save_best_only=True,verbose=1) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit_generator( generator=train_iter, steps_per_epoch=500//Batch_size, epochs=20, initial_epoch=0, validation_data = test_iter, nb_val_samples = 100//Batch_size, callbacks=[ckpt],       )训练过程输出(最优结果:loss: 0.0565 - acc: 0.9820 - val_loss: 0.8307 - val_acc: 0.8800)
Epoch 10/2025/25 [==============================] - 1s 37ms/step - loss: 0.2329 - acc: 0.9040 - val_loss: 0.4041 - val_acc: 0.8700
Epoch 00010: val_acc improved from 0.85000 to 0.87000, saving model to best_model.10-0.87.h5Epoch 11/2025/25 [==============================] - 1s 38ms/step - loss: 0.1633 - acc: 0.9380 - val_loss: 0.5277 - val_acc: 0.8300
Epoch 00011: val_acc did not improve from 0.87000Epoch 12/2025/25 [==============================] - 1s 40ms/step - loss: 0.1394 - acc: 0.9500 - val_loss: 0.4916 - val_acc: 0.7400
Epoch 00012: val_acc did not improve from 0.87000Epoch 13/2025/25 [==============================] - 1s 38ms/step - loss: 0.1746 - acc: 0.9220 - val_loss: 0.5208 - val_acc: 0.8100
Epoch 00013: val_acc did not improve from 0.87000Epoch 14/2025/25 [==============================] - 1s 38ms/step - loss: 0.1009 - acc: 0.9720 - val_loss: 0.5513 - val_acc: 0.8000
Epoch 00014: val_acc did not improve from 0.87000Epoch 15/2025/25 [==============================] - 1s 38ms/step - loss: 0.0565 - acc: 0.9820 - val_loss: 0.8307 - val_acc: 0.8800
Epoch 00015: val_acc improved from 0.87000 to 0.88000, saving model to best_model.15-0.88.h5Epoch 16/2025/25 [==============================] - 1s 38ms/step - loss: 0.0261 - acc: 0.9920 - val_loss: 0.6443 - val_acc: 0.8400
Epoch 00016: val_acc did not improve from 0.88000Epoch 17/2025/25 [==============================] - 1s 38ms/step - loss: 0.0178 - acc: 0.9960 - val_loss: 0.7773 - val_acc: 0.8700
Epoch 00017: val_acc did not improve from 0.88000Epoch 18/2025/25 [==============================] - 1s 38ms/step - loss: 0.0082 - acc: 0.9980 - val_loss: 0.8875 - val_acc: 0.8600
Epoch 00018: val_acc did not improve from 0.88000Epoch 19/2025/25 [==============================] - 1s 37ms/step - loss: 0.0045 - acc: 1.0000 - val_loss: 1.0057 - val_acc: 0.8600
Epoch 00019: val_acc did not improve from 0.88000Epoch 20/2025/25 [==============================] - 1s 37ms/step - loss: 0.0012 - acc: 1.0000 - val_loss: 1.1088 - val_acc: 0.8600
Epoch 00020: val_acc did not improve from 0.880004.模型应用预测结果预测数据if name__ == "__main": """dat1 = get_feature("TRAIN101.mat") print("one data shape is",dat1.shape) #one data shape is (12, 5000) plt.plot(dat1[0]) plt.show()""" """if (os.path.exists(MANIFEST_DIR)==False): create_csv() train_iter = xs_gen(train=True) test_iter = xs_gen(train=False) model = build_model() print(model.summary()) ckpt = keras.callbacks.ModelCheckpoint( filepath='best_model.{epoch:02d}-{val_acc:.2f}.h5', monitor='val_acc', save_best_only=True,verbose=1) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit_generator( generator=train_iter, steps_per_epoch=500//Batch_size, epochs=20, initial_epoch=0, validation_data = test_iter, nb_val_samples = 100//Batch_size, callbacks=[ckpt], )""" PRE_DIR = "sample_codes/answers.txt" model = load_model("best_model.15-0.88.h5") pre_lists = pd.read_csv(PRE_DIR,sep=r" ",header=None) print(pre_lists.head()) pre_datas = np.array([get_feature(item,BASE_DIR="preliminary/TEST/") for item in pre_lists[0]]) pre_result = model.predict_classes(pre_datas)#0-1概率预测 print(pre_result.shape) pre_lists[1] = pre_result pre_lists.to_csv("sample_codes/answers1.txt",index=None,header=None) print("predict finish")下面是前十条预测结果:TEST394,0TEST313,1TEST484,0TEST288,0TEST261,1TEST310,0TEST286,1TEST367,1TEST149,1TEST160,1展望此Baseline采用最简单的一维卷积达到了88%测试准确率(可能会因为随机初始化值上下波动),大家也可以多尝试GRU,Attention,和Resnet等结果,测试准确率会突破90+。能力有限,写的不好的地方欢迎大家批评指正。个人主页-->  
项目github地址:
本文转载文章地址:;utm_medium=social&utm_oi=797960852723609600
◆精彩推荐◆

6月29-30日,2019以太坊技术及应用大会 特邀以太坊创始人V神与以太坊基金会核心成员,以及海内外知名专家齐聚北京,聚焦前沿技术,把握时代机遇,深耕行业应用,共话以太坊2.0新生态。
扫码或点击阅读原文,既享优惠购票!

推荐阅读
Python从入门到精通,这篇文章为你列出了25个关键技术点(附代码)基础必备 | Python处理文件系统的10种方法B站超全分享!2万人收藏的免费计算机科学速成课如何正确的获取数据?苹果 SwiftUI 踢馆谷歌 Flutter!惊!为拯救美国落伍的 STEM 教育,纷纷出手教老师编程?!超级黑幕:开发者千万别被算法迷惑了!程序员爬取 42 年高考数据,告诉你高考为什么这么难?把病毒写到区块链上可以永远不死? 我们做了一个大胆的实验…… | 技术头条新一代私有云来了!看透基于开源生态的产品化

点击阅读原文,查看更多精彩内容。
粤ICP备19111974号